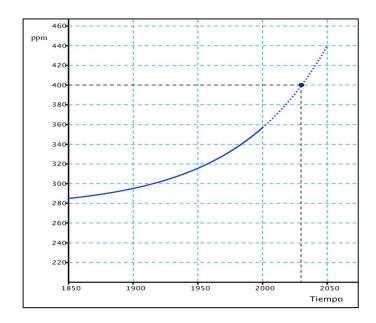


Épreuve de D.N.L. Mathématiques - Espagnol

Annales 2021

 ${f Sujet\,A}$ $m{ ext{ iny Pour les candidats n'ayant pas suivi la spécialité Mathématiques en première <math>m{ iny N}$

Tienes que hablar diez minutos sobre este tema. Las preguntas pueden ayudarte pero no es obligatorio contestar a cada una. Puedes explicar cómo podrías solucionar el ejercicio aunque no sepas resolverlo.



MINISTÈRE ENSEIGNEMENT SUPÉRIEUR DE LA RECHERCHE ET DE L'INNOVATION

GASES DE EFECTO INVERNADERO

Unos expertos científicos construyeron en 1950 un modelo matemático a partir de los datos que tenían desde hacía un siglo: La concentración de dióxido de carbono (CO₂, en ppm⁽¹⁾) en la atmósfera puede crecer de manera exponencial; así, el modelo propuesto sigue la función:

 $C(t) = 10 \times e^{0.014 \times t} + 275$ donde t es el tiempo en años pasados a partir de 1850.

← Contenido atmosférico de CO₂ desde 1850 (Curva *Keeling*)

Años	1850	1900	1950	2000
<i>t</i> =	0	<i>50</i>	100	150
C(t) en ppm	285	295	315	

- 1. Calcula un valor redondeado a la unidad más cercana de la concentración de CO₂ en la atmósfera en 2000 ayudándote de la función *C*.
- 2. En 1997, durante la conferencia de Kioto, debatieron de nuevo sobre la evolución: La concentración de CO₂ ya era de 365 ppm. ¿Qué pudieron concluir?

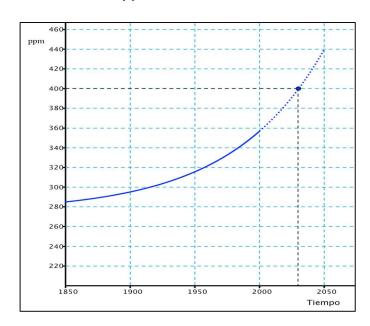
Utilizando el modelo propuesto para encontrar la fecha precisa: cuando la concentración sobrepase los 400 ppm. Así, se construye el algoritmo abajo que nos devuelve el resultado siguiente:

- 3. Analiza y comenta este algoritmo y su resultado.
- 4. Calcula la concentración exacta en 2031.
- 5. ¿Qué pensar de este modelo dado que el 9 de mayo de 2013, esta concentración alcanzó por primera vez un nivel nunca imaginado: 400 ppm.

⁽¹⁾ La concentración de gases en la atmósfera se mide en **partes por millón (ppm**).

Épreuve de D.N.L. Mathématiques - Espagnol

Annales 2021


Sujet B *Pour les candidats ayant suivi la spécialité Mathématiques en première*

Tienes que hablar diez minutos sobre este tema. Las preguntas pueden ayudarte pero no es obligatorio contestar a cada una. Puedes explicar cómo podrías solucionar el ejercicio aunque no sepas resolverlo.

GASES DE EFECTO INVERNADERO

Unos expertos científicos construyeron en 1950 un modelo matemático a partir de los datos que tenían desde hacía un siglo: La concentración de dióxido de carbono (CO₂, en ppm⁽¹⁾) en la atmósfera puede crecer de manera exponencial; así, el modelo propuesto sigue la función:

$$C(t) = 10 \times e^{0.014 \times t} + 275$$
 donde t es el tiempo en años a partir de 1850.

← Contenido atmosférico de CO₂ desde 1850 (Curva *Keeling*)

Años	1850	1900	1950	2000
<i>t</i> =	0	<i>50</i>	100	150
C(t) en ppm	285	295	315	

- 1. Calcula un valor redondeado a la unidad más cercana de la concentración de CO₂ en la atmósfera en 2000 ayudándote de la función C.
- 2. En 1997, durante la conferencia de Kioto, debatieron de nuevo sobre la evolución: La concentración de CO₂ ya era de 365 ppm. ¿Qué pudieron concluir?

Utilizando el modelo propuesto para encontrar la fecha precisa: cuando la concentración sobrepase los 400 ppm. Así, se construye el algoritmo abajo que nos devuelve el resultado siguiente:

- 3. Analiza y comenta este algoritmo y su resultado.
- 4. Busca este resultado por cálculo, resolviendo una inecuación.
- 5. ¿Qué pensar de este modelo dado que el 9 de mayo de 2013, esta concentración alcanzó por primera vez los 400 ppm?

⁽¹⁾ La concentración de gases en la atmósfera se mide en **partes por millón (ppm**).